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Abstract

Impulsive responses in geared systems with multiple clearances are studied when the mean torque excitation and system

load change abruptly, with application to a vehicle driveline with an automatic transmission. First, torsional lumped-mass

models of the planetary and differential gear sets are formulated using matrix elements. The model is then reduced to

address tractable nonlinear problems while successfully retaining the main modes of interest. Second, numerical

simulations for the nonlinear model are performed for transient conditions and a typical driving situation that induces an

impulsive behaviour simulated. However, initial conditions and excitation and load profiles have to be carefully defined

before the model can be numerically solved. It is shown that the impacts within the planetary or differential gears may

occur under combinations of engine, braking and vehicle load transients. Our analysis shows that the shaping of the engine

transient by the torque converter before reaching the clearance locations is more critical. Third, a free vibration experiment

is developed for an analogous driveline with multiple clearances and three experiments that excite different response

regimes have been carried out. Good correlations validate the proposed methodology.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Conditions under which teeth separate and collide in geared systems have fascinated researchers over the
last three decades. This is evident from a detailed summary of the existing literature that was conducted by
Wang et al. [1]. They examined about 200 papers and found essentially the following two types of problems
that arise due to the omnipresent backlashes. First, the gear rattle problem, which manifests itself due to
externally applied pulsating torque under light or zero mean operating torques [2,3]. Second, the gear whine
problem, which is excited by internal transmission error and/or periodic gear mesh variations at gear mesh
frequencies and their harmonics. Nonlinear effects include the jump phenomenon, sub-harmonic resonances
and the like [4–6]. Yet, there is another class of problem that was not addressed in Ref. [1]. It deals with
impacting gear teeth when the mean operating torque is suddenly changed. In context of vehicle drivelines it is
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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had been dubbed the ‘clunk’ problem. This paper will illustrate the key features of this problem via an
automatic transmission equipped powertrain system with multiple clearances. Theory will be compared with
analogous experiments.

2. Problem formulation

Both numerical and semi-analytical methods have been used to examine the typical gear rattle problem [2,7].
Padmanabhan et al. [8] discuss model reduction, numerical stiffness and non-dimensional formulations for
gear rattle problems. Kim et al. [9] have assessed four types of smoothening functions for the discontinuous
stiffness nonlinearity. Krenz [10] provides perhaps the earliest experimental results for ‘‘clunk’ in a vehicle
driveline, as induced by transient torques and load reversals which also excite the lowest mode of the
powertrain (termed as ‘shuffle’ or ‘surging’). Prior researchers have typically focused on modelling gear
impacts in manual transmissions and such studies are commonly complimented with rig tests [11–16]. It is
evidently a difficult problem as few remedial measures are available. Some suggestions, such as a reduction in
the component inertias or in angular speed [12] are difficult to implement. Since the literature on vehicle clunk
[11–16] is sparse, a systematic approach is needed to formulate tractable problems. For instance, consider the
generic example of Fig. 1 for a geared torsional system with piecewise nonlinear elastic connections
(or multiple clearances) as required for the transient excitation problem. Natural modes of this system will
vary depending on sub-system separation(s). Our example case of Fig. 2, rear wheel drive vehicle, is installed
on a powertrain test rig and is fitted with an automatic transmission (AT) consisting of a torque converter with
lock-up clutch, four multi-plate wet clutches, two brake bands, two one-way clutches and a two-staged
Ravigneaux planetary gear set. For details such as the powerflow schematic and gear settings, see Ref. [17].
The chief objectives are as follows: (1) Formulate a detailed linear, torsional model of powertrain (with AT)
and develop reduced order systems to yield tractable nonlinear problems. (2) Examine nonlinear cases and
predict impulsive motions. (3) Validate methodology with experiment. On a more fundamental note, this
article will contribute to the transient analysis of geared systems with clearances and stimulate reader interest
in contributing to research in transient problems in nonlinear systems.

3. Nature of the transient excitation

A key assumption within this paper is that analysis can be simplified by omitting a torque converter model,
in the case of unlocked converter. The nature of the torque excitation, T1(t), is transient at the engine (due to
throttle change) and shaped by the converter fluid coupling before reaching the transmission. To illustrate
this, consider a two degree of freedom, first order, semi-definite model with engine inertia, J1, reflected
transmission, driveline and vehicle inertia lumped into J2, and c1, a viscous damping element representing the
fluid coupling within the torque converter. This system is given by the following equation in terms of O ¼
_y1 � _y2 with system parameters t, k1, k2, where T2 is a constant vehicle load:

t _Oþ O ¼ k1T1ðtÞ þ k2T2; t ¼
J1J2

c1ðJ1 þ J2Þ
; k1 ¼

J2

c1ðJ1 þ J2Þ
; k2 ¼

J1

c1ðJ1 þ J2Þ
. (1a2d)

The analytical solution is O(t) ¼ k1T1 se
�t/t, given the ideal step-down excitation at t ¼ 0, where T1s ¼ T1 for

tp0, T1s ¼ 0 for t40 and T2 ¼ 0. This expression shows that the rate of change of torque into the
transmission system depends on t and its amplitude is controlled by k1(t). This is of interest from the
standpoint of engine controls and calibration in respect to shaping the transient torque excitation before
reaching the clearance locations. One should recognise that an abrupt step-down will not occur in a physical
C
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Fig. 1. Generic geared torsional system subject to transient torque excitations. Here the linear sub-systems A–C are joined by the

piecewise nonlinear springs (with backlash in the first stage).
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Fig. 2. UTS powertrain test rig (A-engine, B-transmission, C-output shaft strain gauge, D-forward final drive, E-axle strain gauges, F-

forward tires, G-flywheels, H-rear tires, I-rear final drive, J-dynamometer).

Fig. 3. Detailed lumped torsional model of the automatic transmission powertrain system.
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system; a ramp-down is more appropriate to throttle release over a given time span and the sine smoothened
ramp-down removes the discontinuous nature of a pure ramp. Given this understanding, the sine smoothened
ramp is used as the direct excitation at the turbine, within Teng(t), in subsequent nonlinear simulations. Mean
load and excitation from braking and terrain are also significant to the problem and are included in this study.

4. Detailed model of an automatic transmission powertrain

4.1. Matrix elements for the planetary gear set

A detailed lumped torsional model for the powertrain system is shown in Fig. 3. It may be reduced in
various ways and in this paper, two such reductions are made for transient analysis given multiple clearances.
Equations of motion for this system are assembled from Newton’s laws using lumped matrix elements through
the finite element method [18], Lagrangian formulation [19] may be utilised as well. Our approach is also appli-
cable to compounds sets with rigid teeth for analysis of transient gear shifting events [17]. The two-stage gear
set (with three planet branches) is modelled using a generalised coordinate vector, h ¼ {yfs ysp ylp yrs ycr yr}

T,
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Fig. 4. Free body diagrams of planetary gear set lumped inertias.

A.R. Crowther et al. / Journal of Sound and Vibration 306 (2007) 444–466 447
where yfs is the forward sun gear, yrs, the rear sun gear, ysp and ylp, the short and long pinions or planet gears,
ycr, the planet gear carrier that holds the pinions and yr, the ring gear. Within the automatic transmission
system, the forward sun gear, rear sun gear, planet carrier and ring gear connect through to the clutch drum/
propeller shaft via shaft connections. From the free body diagrams of Fig. 4 and considering the motion about
gear centerlines we have

J fs
€yfs ¼ T fs � 3rfsF sp; 3Jsp

€ysp ¼ 3rspF lp � 3rspF sp, (2a,b)

3J lp
€ylp ¼ 3rlpðF lp � F rs � F rÞ; Jrs

€yrs ¼ T rs � 3rrsF rs, (2c,d)

Jcr
€ycr ¼ � Tcr þ 3ðF rs � FrÞðrrs þ rlpÞ þ 3F spðrfs þ rspÞ � 3F lpðrsp þ rlpÞ,

Jr
€yr ¼ � Tr þ 3rrFr, ð2e; fÞ

where J and r are each gears inertia and radius and F is the mesh force, given by the tooth bending stiffness
and relative displacement. Nomenclature for mesh forces and external torques applied to each gear is
indicated in Fig. 4. Acceleration relationships are derived for the gear set via Fig. 5:

ðaBÞt ¼ ðaCÞt þ ðaB=CÞt; €yfsrfs ¼ €ycrðrfs þ rspÞ � €ysprsp, (3a,b)

ðaEÞt ¼ ðaF Þt þ ðaE=F Þt; €yrsrrs ¼ €ycrðrlp þ rrsÞ � €ylprlp, (4a,b)

ðaGÞt ¼ ðaF Þt þ ðaG=F Þt; €yrrr ¼
€ycrðrlp þ rrsÞ þ €ylprlp, (5a,b)

ðaF Þt

sin e
¼
ðaD=F Þt � ðaD=CÞt

sin c
;

€ycrðrlp þ rrsÞ

sin e
¼
€ylprlp � ð�€ysprspÞ

sin c
(6a,b)

which reduces to

€ycrðrlp þ rspÞ ¼ €ylprlp þ €ysprsp, (6c)

where (a)t denotes the tangential acceleration of a point on a body with absolute point of reference taken as
point A in Fig. 5 or a relative point of reference taken such as point G relative to point F. The acceleration
relationships can be used to determine mesh displacement, hence mesh forces, via Fi ¼ kiDxi (and by ignoring
gear mesh damping), where k designates the mesh stiffness:

F sp ¼ ksp yfsrfs þ ysprsp � ycrðrfs þ rspÞ
� �

; F lp ¼ klp �ylprlp � ysprsp þ ycrðrlp þ rspÞ
� �

, (7a,b)

F rs ¼ krs ylprlp þ yrsrrs � ycrðrlp þ rrsÞ
� �

; Fr ¼ kr ylprlp þ ycrðrlp þ rrsÞ � yrrr

� �
. (7c,d)
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The equations of motion are now formulated with the internal forces replaced by k and Dx and may be assembled to the undamped system
I€hþ KhðtÞ ¼ TðtÞ, yielding the matrix elements:

I ¼ diag½Jfs 3Jsp 3J lp Jrs Jcr Jr�, (8a)

K ¼

3r2fsksp 3rfsrspksp 0 0 �3rfsðrfs þ rspÞksp 0

3rfsrspksp 3r2spðksp þ klpÞ 3rsprlpklp 0 �3rsp ðrfs þ rspÞksp þ ðrsp þ rlpÞklp

� �
0

0 3rsprlpklp 3ðr2lpklp þ r2lpkrs þ r2lpkrÞ 3rlprrskrs 3rlp �ðrsp þ rlpÞklp � ðrlp þ rrsÞkrs þ ðrlp þ rrsÞkr

� �
�3rlprrkr

0 0 3rlprrskrs 3r2rskrs �3rrsðrlp þ rrsÞkrs 0

�3rfsðrfs þ rspÞksp �3rsp
ðrfs þ rspÞksp

þðrsp þ rlpÞklp

" #
3rlp

�ðrsp þ rlpÞklp � ðrlp þ rrsÞkrs

þðrlp þ rrsÞkr

" #
�3rrsðrlp þ rrsÞkrs 3

ðrfs þ rspÞ
2ksp þ ðrsp þ rlpÞ

2klp

þðrlp þ rrsÞ
2krs þ ðrlp þ rrsÞ

2kr

" #
�3rrðrlp þ rrsÞkr

0 0 �3rlprrkr 0 �3rrðrlp þ rrsÞkr 3r2rskr

2
66666666666664

3
77777777777775
(8b)

TðtÞ ¼ ½T fs 0 0 T rs �Tcr �Tr �
T. (8c)
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Fig. 5. Acceleration relationships of planetary gear set lumped inertias.

Fig. 6. Final drive and differential lumped coordinates in exploded assembly.
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The inertia, I and stiffness, K matrices are analogous to those from torsional finite elements [17,20]. If these
matrix elements are part of a surrounding system then the components of the torque vector Eq. (8c) can be
replaced by the torsional stiffness elements that couple the subsystems. This dynamic system has interesting
eigenvalue properties which vary depending on constraints imposed. For an unconstrained system, four real
eigenvalues are found representing natural frequencies with corresponding modes, two zero eigenvalues
are found with eigenvectors that can be combined in a linear combination to find a mode for rigid body
motion for a particular gear ratio (i.e. when constrained for a fixed gear). With one constraint applied, e.g.
rear sun gear held for second gear, there are again four natural frequencies and now just one rigid body mode
(for a particular gear ratio). The natural frequencies and modes can change significantly for the various
constraints.

4.2. Matrix elements for the final drive

The final drive (hypoid gear set of Fig. 6) is modelled using the generalised coordinate vector h ¼ {y1 y2 y3 y4
y5 y6}

T, where y1 is the final drive pinion, y2, the ring gear, y3 and y5, the differential spider gears, y4 and y6, the
differential wheel gears (or side axle gears). Within the driveline, the pinion connects to the propeller shaft and
the wheel gears connect to left and right axles. By applying the same methodology as for the planetary gear set
the matrix elements are obtained as

I ¼ diag½J1 J2 J3 J4 J5 J6�, (9a)
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K ¼

r21k12 �r1r2k12 0 0 0 0

�r1r2k12

r22k12

þr22Aðk34 þ k36 þ k45 þ k56Þ

�r2Ar3k34

þr2Ar3k36

�r2Ar4k34

�r2Ar4k45

r2Ar5k45

�r2Ar5k56

�r2Ar6k36

�r2Ar6k56

0 �r2Ar3k34 þ r2Ar3k36 r23k34 þ r23k36 r3r4k34 0 �r3r6k36

0 �r2Ar4k34 � r2Ar4k45 r3r4k34 r24k34 þ r24k45 �r4r5k45 0

0 r2Ar5k45 � r2Ar5k56 0 �r4r5k45 r25k56 þ r25k45 r5r6k56

0 �r2Ar6k36 � r2Ar6k56 �r3r6k36 0 r5r6k56 r26k36 þ r26k56

2
6666666666664

3
7777777777775
,

(9b)

TðtÞ ¼ ½T1 0 0 � T4 � T6�
T. (9c)
4.3. Global System Assembly

For the dynamic model of Fig. 3 the global coordinate vector is h ¼ {y1yy26}
T, corresponding to

I€hþ KhðtÞ ¼ TðtÞ. This system is assembled from shaft elements for stiffness connections k1 to k14 and the
planetary gear and final drive matrix elements. Additionally in assembly, for the planetary gear set, the local
coordinate vector is renumbered as h ¼ {y6, y7,y8, y9, y10, y11}

T and is used with matrix elements (Eqs. (8a) and
(8b)). For the final drive, the local coordinate vector is renumbered as h ¼ {y17, y18,y19, y20, y21, y22}

T and is
used with Eqs. (9a) and (9b). The following should be noted for clarity: (1) The C1 clutch hub and planet
carrier are coordinates 3 and 10 for the carrier shaft element, k3. (2) The C2/4 clutch hub and forward sun gear
are coordinates 4 and 6 for the forward sun gear shaft element, k2. (3) The C3 drum and rear sun gear are
coordinates 5 and 9 for the rear sun gear shaft element, k4. (4) The ring gear and upper universal joint are
coordinates 11 and 12 for the output shaft element, k5. (5) The single piece propeller shaft is divided into five
stiffness elements, k6–k10 with mass lumped on the six surrounding coordinates, 12–17. (6) Left and right
differential wheel gears (coordinates 20 and 22) connect through the axle stiffness elements, k11 and k13, to the
wheel hubs (coordinates 23 and 25). As noted later in Section 6, large flywheels on the test rig act as the
equivalent mass of a vehicle. Thus, the tire coordinates, y24 and y26, are connected by the stiff flywheel shaft as
shown in the test rig photograph (Fig. 2). The stiff flywheel shaft constrains any differential action except in
the vibration mode. The matrix elements for the flywheel shaft, k15, are as follows where rtire, is the tire rolling
radius, rfly, is the radius of the flywheels that are in contact with the tire and neff, the effective ‘gear’ ratio of
these contacting bodies:

he15 ¼
y24
y26

( )
Ie15 ¼ n2

eff diag½J24B J26B�; Ke15 ¼
n2
effk15 �neffk15

�neffk15 n2
effk15

" #
; neff ¼

rtire

rfly
. (10a2d)
4.4. Eigensolutions of the linear system

Once assembled, the eigenvalue problem for the system matrix will yield several rigid body modes.
Constraints need to be applied to simulate the clutch and band elements. For example, with reference to Table 1,
for the transmission in second gear, the C2 clutch is engaged and the B1 brake band is held. Thus in the system
of equations of motion, coordinates 2 and 4 are combined and coordinate 5 is grounded. The spider gears are
also grounded, so as to model the differential slip clutch locked. Given the above constraints, the real
eigensolutions yield one zero eigenvalue and 21 real eigenvalues, which are influenced by a combination of
torsional stiffness of the shafts and flexural stiffness at tooth contact. Selected natural frequencies are given in
Table 2. The eigenvector corresponding to the zero eigenvalue describes the absolute displacements including
ratios for transmission second gear and the final drive.
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Table 1

Constrained/engaged coordinates for the detailed model of the automatic transmission powertrain system

Gear Ratio Constrained

coordinate(s)

Description Engaged co-

ordinate(s)

Description dof

1st 2.393 10 Carrier held by one way 1–2

clutch

2 and 4 Clutch drum and C2/4 clutch hub engaged 24

2nd 1.480 5 C3 drum held by B1 brake

band

2 and 4 Clutch drum and C2/4 clutch hub engaged 24

3rd 1.000 — 2 and 4 Clutch drum and C2/4 clutch hub engaged

and C1 clutch hub engaged

24

2 and 3

4th 0.677 5 C3 drum held by B1 brake

band

2 and 3 Clutch drum and C1 clutch hub engaged 24

Spider gears

grounded

As per

gear

19 and 21 Spider gears grounded for no

differential action

— — 22

In all cases spider gears grounded for no differential slip.

A.R. Crowther et al. / Journal of Sound and Vibration 306 (2007) 444–466 451
4.5. Clearance models

Clearances may be modelled using the piecewise nonlinear stiffness as follows where di, represents the
backlash for the ith mesh stiffness element:

ki ¼
ki; xij j � 0:5di;

0; xij jo0:5di:

(
(11)

For a gear pair xi ¼ riyi7ri+1yi+1 is the relative displacement between contacting teeth, where y is the angular
displacement and r the contact radius. The sign is chosen as positive if the gears provide a reversal in direction
of rotation and negative if they do not. For the planetary set, the relative displacements are provided within
Eq. (7) and for the final drive they may be extracted from Eq. (9b). With the gear mesh force, F, modelled as
such, a torque vector is needed to account for the offset of force from the zero position. Thus the global torque
vector includes the local torque offsets as

TdðiÞ ¼ 0:5signðxiÞrikidi; Tdðiþ1Þ ¼ �0:5signðxiÞriþ1kidi. (12)

Typical locations of clearances include splines (at some shaft connections), within joints (which could be
represented in this model by k6 and k10, for the two universal joints), in multi-staged clutch dampers and in
gear sets. Fig. 7 is a typical reduced model that could include clearances in forward sun/short pinion mesh,
rear sun/long pinion mesh and long pinion/ring mesh for the planetary gear set. The final drive is represented
by pinion and ring gears with yet another clearance in this mesh. The inclusions of all these nonlinearities will
pose computational challenges [8] and thus several pragmatic choices must be made to pre-condition the
associated numerical stiffness issues: (1) Lump short and long pinions to one coordinate, thereby reducing
degrees of freedom by one and removing the highest eigenvalue. (2) Reduce the gear mesh stiffness artificially
by 10–100 times, leading to a drastic reduction in the eigenvalue range without greatly changing system
response for transient impacts. (3) Carefully select smoothening functions for the discontinuous stiffness
functions [9]. (4) Rescale the time variable for a longer solution domain. (5) Further reduce the system order
for a particular analysis objective. Within this paper, the last option is chosen for the sake of illustration.
5. Reduced model for automatic transmission powertrain and nonlinear simulation

5.1. Formulation

Fig. 8 presents the reduced order model of the powertrain system with ten degrees of freedom, N̄ ¼ 10. Note
that the tires (and vehicle equivalent inertia) are modelled as a single inertia, J10 ¼ J tire þ r2tiremv, where Jtire is
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Table 2

Mode shape comparison for automatic transmission powertrain system: detailed model versus reduced order model

Mode Rigid body mode Driveline shuffle Axle left Axle right Transmission and driveline I

Natural frequencies (Hz) 0 0 6.54 6.41 32.3 32.1 33.2 33.0 142 137

Turbine 1.00 1.00 1.00 1.00 �0.19 �0.18 �0.13 �0.12 �0.08 �0.09

Clutch drum 1.00 1.00 0.98 0.99 �0.09 �0.08 �0.05 �0.05 0.80 0.76

Transmission driving gears 1.00 1.00 0.97 0.97 �0.03 �0.03 �0.01 �0.02 1.00 0.96

Transmission driven gears 0.68 0.68 0.66 0.66 �0.02 �0.01 0.00 0.00 0.69 0.70

Universal joint 0.68 0.68 0.64 0.63 0.07 0.08 0.06 0.06 0.84 0.86

Final drive pinion 0.68 0.68 0.61 0.60 0.18 0.18 0.13 0.13 1.00 1.00

Final drive ring 0.20 0.20 0.18 0.18 0.06 0.06 0.04 0.04 0.29 0.29

Right hub 0.20 0.20 0.05 0.05 0.24 0.25 1.00 1.00 �0.01 0.00

Left hub 0.20 0.20 0.05 0.04 1.00 1.00 �0.25 �0.26 0.00 0.00

Tire 0.20 0.20 �0.01 �0.01 0.00 0.00 0.00 0.00 0.00 0.00

Mode Transmission and driveline II Transmission II Propeller shaft I Propeller shaft II Transmission III

Natural frequencies (Hz) 250 247 532 476 1404 1195 1759 1709 2503 2114

Turbine 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Clutch drum �0.54 �0.57 �0.35 �0.48 0.00 0.00 0.00 0.00 �0.01 0.00

Transmission driving gears �0.30 �0.33 1.00 0.95 �0.09 �0.04 0.06 �0.02 1.00 1.00

Transmission driven gears �0.18 �0.16 0.74 1.00 �0.04 �0.04 0.01 0.00 �0.50 0.55

Universal joint 0.37 0.39 0.39 0.46 1.00 1.00 �0.83 �0.85 0.13 �0.13

Final drive pinion 1.00 1.00 �0.16 �0.30 0.07 0.02 1.00 1.00 �0.01 0.06

Final drive ring 0.30 0.30 �0.06 �0.11 �0.04 �0.05 �0.22 �0.16 0.00 0.00

Right hub 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Left hub 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tire 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bold values designate reduced model; other values are for detailed model.
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Fig. 8. Reduced order torsional model of automatic transmission powertrain system. This includes unlocked torque converter for fixed

gear transient analysis with clearances in transmission and final drive gear pairs.

Fig. 7. Reduced order torsional model of automatic transmission powertrain system. This includes unlocked torque converter and

clearances in the planetary and final drive gear sets.
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the tire inertia and mv the vehicle mass. The stiffness elements are transmission input shaft, forward sun shaft,
output shaft, propeller shaft, gear meshes, axles and tires. The second gear transmission speed ratio is selected
as nT ¼ r4/r3 ¼ 1.47 and the final drive ratio as nF ¼ r7/r6 ¼ 3.45. The model is described with torsional finite
elements and the generalised global coordinate vector h ¼ {y1yy10}

T. The system is assembled given stiffness
connections such as k2 (shaft) and k3 (geared):

he2 ¼
y2
y3

( )
; Ie2 ¼ 0:5diag½J2 J3�; Ke2 ¼

k2 �k2

�k2 k2

" #
, (13a2c)
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he3 ¼
y3
y4

( )
; Ie3 ¼ 0:5diag½J3 J4�; Ke3 ¼

r23k3 �r3r4k3

�r3r4k3 r24k3

" #
. (14a2c)

The reversal of direction of rotation by the gears has been ignored as it is irrelevant to the vibratory system
and analysis; in fact, the planetary gear set (except for reverse gear) and final drive do not reverse rotation. In
this model, the clearance is applied in two locations, at the transmission mesh between coordinates 3 and 4
(i ¼ 3) and at the final drive mesh between coordinates 6 and 7 (i ¼ 6). The backlash for the transmission gear
pair is set at high values, for the sake of illustration, 2.0mm and for the final drive gear pair at 4.0mm, as these
values may also be seen as inclusive of nearby lashes from the splines and joints. The global system is of the
form:

I€hþ C_hþ KðyÞhðtÞ ¼ Tðy; _y; tÞ, (15)

I ¼ diag½J1 . . . J10�; (16)

K ¼

k1 �k1

�k1 k1 þ k2 �k2

�k2 k2 þ r23k3 �r3r4k3

�r3r4k3 r24k3 þ k4 �k4

�k4 k4 þ k5 �k5

�k5 k5 þ r26k6 �r6r7k6

�r6r7k6 r27k6 þ k7 þ k9 �k7 �k9

�k7 k7 þ k8 �k8

�k9 þk9 þ k10 �k10

�k8 �k10 k8 þ k10

2
66666666666666666664

3
77777777777777777775

.

(17)

The stiffness matrix is tri-diagonal apart from the driveline subsystem, here there is branching at the final drive
output and a tire stiffness coupling left and right wheel hubs to the same tire/vehicle coordinate.

5.2. Modal analysis of the linear system

The eigensolutions are found for Eq. (15) with T ¼ 0 and C ¼ 0. There is one zero eigenvalue (rigid body
rotation) and 9 non-zero eigenvalues, as given in Table 2. The eigenvector for the rigid body mode, w,
describes the absolute displacements for the transmission in second gear and for final drive gearing. The
frequencies and mode shapes of this reduced system match closely with those of the detailed powertrain
system. They are compared in Table 2. Note that the forward sun gear/ring gear coordinates from the detailed
model are translated to transmission input/output coordinates for comparison. In the model reduction, the
combined stiffness elements are summed in series and the lumped masses carefully redistributed to keep the
same overall stiffness and inertia. The reduction process has been successful. Only the ‘Transmission II’,
‘Propeller Shaft I’ and ‘Transmission III’ modes have a marked difference in frequency. The mode shapes are
very similar for the former two. Interestingly, the ‘Transmission III’ mode shape has differences in sign, but
not in magnitude. These differences at higher frequencies are expected with the reduction process, yet these
higher modes could be excited by the transient impacts.

5.3. Construction of the viscous damping matrix

In automotive powertrain systems, nonlinear damping effects are seen but we assume viscous damping and
attempt to construct C with the same form as K. However, damping of the shuffle mode (first mode of
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Table 3

Modal damping ratios for the reduced model of the automatic transmission powertrain system

Mode description Damping ratio (%) Enhanced damping ratio (%) with dynamic

drag 2Nms/rad

Driveline shuffle 0.6 8.2

Axle left 5.1 5.1

Axle right 5.2 5.2

Transmission and driveline I 3.8 3.8

Transmission and driveline II 2.7 2.7

Transmission I 2.5 2.5

Propeller shaft I 5.4 5.4

Propeller shaft II 1.8 1.8

Transmission III 2 2
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vibration) is difficult with application of only viscous damping elements in parallel with stiffness (the Voight
Model), without the inclusion of a dynamic model for the torque converter. The viscous damping coefficients
as applied yield the damping ratios of Table 3. Observe that all modes are reasonably damped but the
damping ratio at the first mode is only 0.6%. Increasing the tire damping or other physical damping
elements could further dampen this mode but with the unwanted effect of raising other damping ratios
or even overdamping some modes. A viscous damping matrix may be constructed to achieve fixed damping
ratios for all modes (such as 5%). This matrix is often fully populated with a combination of negative and
positive damping coefficients necessary to achieve high damping at the shuffle mode. For nonlinear
simulations, in some instances, this method could cause the system to become numerically unstable, though it
is appropriate for a linear time-invariant system. Consequently, to achieve sufficient damping for the first
mode, an inertial damping element is applied at turbine as Dtð

_y; tÞ ¼ �d1ð
_y1ðtÞ � _̄y1ðtÞÞ; where d1 is the viscous

(drag) damping coefficient and _̄y1ðtÞ is the mean speed of the turbine. For the free vibration analysis of the
linearised system, the mean speed is zero and the dynamic drag coefficient shifts into the C matrix as a
diagonal element. Using d1 ¼ 2Nms/rad increases the first damping ratio to 8.2%, without affecting other
modes (Table 3).
5.4. Transient analysis

The system of governing Eq. (15) includes piecewise functions for the stiffness discontinuity, its solutions
include the rigid body motion of the powertrain, forced response at lower modes and nonlinear (transient)
response. The simulation is programmed in Matlab with ODE15S, a solver that uses Gear’s Method for
stiff systems [21]. Results were comparable to those obtained via a fourth-order Runge–Kutta solver though
the Gear’s Method was about 12 times faster. Note the simulated time is 8 s so as to capture the entire
driving event, parametric studies would be less than 1 s, providing reasonably efficient computation
times. Convergence was studied by doubling and halving the maximum time step and the solutions were
practically identical though the high-frequency response after impacts was more accurate for a smaller time
increment.
5.5. Torque excitations

Torque excitations include ramped-down engine torque, sharp applications of brake torque and gradual
changes in torque at the tires from the changing gradient of incline with respect to the travelling vehicle.
Interpolation on an empirical map (for a typical engine) is used to give the engine mean torque, Tmð

_y1; ZÞ on
solutions for engine speed, _y1ðtÞ, at a given throttle setting, Z(t). It is applied directly to the combined turbine,
engine and flywheel inertia. Throttle setting is initially at ZI ¼ 0.1 and remains constant until t(P) ¼ 4 s. Then
the throttle is reduced by DZ ¼ Zi�Zf over DtZ ¼ t(q)�t(P) ¼ 0.2 s for Zf ¼ 0.05. This change in throttle setting



ARTICLE IN PRESS
A.R. Crowther et al. / Journal of Sound and Vibration 306 (2007) 444–466456
is a sine smoothened ramp-down, as described below:

ZðtÞ ¼

Zi; totðpÞ;

0:5ðZi þ Zf Þ þ 0:5D Z sin
pðt� tðpÞÞ

DtZ
þ 0:5p

� �
; tðpÞptptðqÞ;

Zf ; t4tðqÞ:

8>>><
>>>:

(18)

Torque pulsations are added for a typical six cylinder engine, N ¼ 6, i.e. at third, sixth and ninth orders of
engine (turbine) speed, _y1ðtÞ, giving, T engðtÞ ¼ Tmð

_y1; ZÞ þ
P

jAj sinðj _y1tþ fjÞ; j ¼ 3; 6; 9, where j ¼ 0.5N, N,
1.5N are the dominate torque orders, Aj is the amplitude and fj is the phase for the jth order.

Second, the brake torque, Tb(t), is applied to simulate a driver pressing once on the brake and releasing,
essentially a tap. The driver then presses again and holds constant braking torque. The torque is applied at
t(P) ¼ 4 s for Dtb1 ¼ tðrÞ� � tðpÞ ¼ 0:5� DtðrÞ� (first ramp) and released at t ¼ t(r)� ¼ t(r)�Dt(r)�, which is
the time step preceding t(r). Here, Dt(r)� is the step size at t(r)�. The brake torque is applied again at
t(r) ¼ 4.5 s for Dtb2 ¼ tðsÞ � tðrÞ ¼ 0:5 s (second ramp) and from t(S)+ ¼ 5+Dt(s) it is held constant at
Tb(s) ¼ 600Nm. The brake torque is split evenly over left and right hubs. An algorithm is presented below:

TbðtÞ ¼

0; totðpÞ;

TbðsÞ

Dtb1

t� tðpÞ½ �; tðpÞptotðrÞ;

TbðsÞ

Dtb2

t� tðrÞ½ �; tðrÞptptðsÞ;

TbðsÞ; t4tðsÞ:

8>>>>>>><
>>>>>>>:

(19)

Third, the road profile is modelled with a parabolic curve which describes a hill of width, w ¼ 100 and height,
h ¼ 5. The path of the vehicle along the equation of the curve is determined dynamically from the absolute
angular displacement of the tire, y10(t), without any slip. Using x and y as the respective vehicle longitudinal
and vertical positions on the hill, the equation of the curve, gradient and domain for the hill are
y ¼ h� ð4h=w2Þx2, ðdy=dxÞ ¼ �ð8h=w2Þx and x 2 f�0:5w 0:5wg. Initially, at t(0), the vehicle longitudinal
position, tire angular displacement and road gradient are x(0) ¼ �0.5w, y10(0) ¼ 0, w(0) ¼ �(8h/w2)x(0).
This initial road gradient is a maximum and equal to 11.461 for the given h and w. At each time step, tk,
the longitudinal position is determined by the following, where w(t) ¼ �(8h/w2)x(t), xðtkÞ ¼ xðtk�1Þþ

rtire cos wðtk�1Þ½y10ðtkÞ � y10ðtk�1Þ�. Values of x(tk) and w(tk) are stored at each step and used as x(tk�1) and
w(tk�1) in the subsequent time steps. The time-varying torque on the tire from the weight of the vehicle is
determined given the tire radius, vehicle mass and road gradient, Tgrad(t) ¼ rtiremvg sin w(t). Finally, a constant
Dv ¼ 30Nm is applied at the tire representing both aerodynamic drag and rolling resistance since the vehicle
speed is fairly constant. The global torque vector for Eq. (15) may be written as follows given the above
descriptions, also torque offsets Eq. (12) for the clearance algorithm Eq. (11) applied at elements i ¼ 3 and 6:

T ¼ ½ðT eng �DtÞ Td3 Td4 0 Td6 Td7 � 0:5Tb � 0:5Tb � ðTgrad þDvÞ�
T. (20)

5.6. Initial conditions

First, the system of equations of motion Eq. (15) is sub-structured as follows where ha ¼ {y1yy9} and
hb ¼ {y10}:

h ¼ fha hbj g
T; I ¼

Ia Iab

Iba Ib

" #
; K ¼

Ka Kab

Kba Kb

" #
; C ¼

Ca Cab

Cba Cb

" #
; T ¼ Ta Tbj½ �T. (21a2d)

Then initial condition displacements are found for the grounded system as follows, note that gears are in mesh
so values of Tdi

are zero:

hað0Þ ¼ K�1a ð�Ia
€hað0Þ þ Tað0ÞÞ; hbð0Þ ¼ 0, (22a,b)
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where the rigid body accelerations are given by €hað0Þ ¼ €y1ð0Þwa and wa is sub-structure a of the eigenvector, w,
of rigid body motion (Table 2), normalised to c1 ¼ 1 (turbine coordinate), that corresponds with the zero
eigenvalue from the homogeneous system of Eq. (15). The turbine acceleration is determined with the system
considered as one lumped equivalent inertia €y1 0ð Þ ¼ I�1eqvðT engð0Þ � ðj10=j1Þ½Tgradð0Þ þDvð0Þ�Þ. Note that
j1=j10 ¼ nT nF is the speed ratio between the engine and the tire. Also, the system equivalent inertia with
respect to the turbine coordinate is I eqv ¼

Pm¼10
1:m ½Iðm;mÞðjm=j1Þ

2
�. Similarly j1=jm is the effective speed ratio

between the turbine and any coordinate m. Engine initial angular velocity is prescribed as _y1ð0Þ ¼ 220 rad=s,
then for all coordinates the initial condition velocities are, _hð0Þ ¼ _y1ð0Þw. The initial condition displacements
given by Eq. (22) are for a linearised stiffness matrix with respect to the nonlinear stiffness for clearance,
accordingly a displacement offset is applied to account for the torque offsets within the torque vector Eq. (20).
First, the coordinates upstream of the transmission gear mesh (i ¼ 3) are rotated through half the transmission
clearance and half the final drive clearance (accounting also for the transmission ratio):

ŷ1ð0Þ ¼ y1ð0Þ þ
d3
2r3
þ nT

d6
2r6

; ŷ2ð0Þ ¼ y2ð0Þ þ
d3
2r3
þ nT

d6
2r6

; ŷ3ð0Þ ¼ y3ð0Þ þ
d3
2r3
þ nT

d6
2r6

. (23a2c)

Then coordinates upstream of the final drive gear mesh (i ¼ 6) are rotated through half the final drive
clearance:

ŷ4ð0Þ ¼ y4ð0Þ þ
d6
2r6

; ŷ5ð0Þ ¼ y5ð0Þ þ
d6
2r6

; ŷ6ð0Þ ¼ y6ð0Þ þ
d6
2r6

. (24a2c)

The initial condition vectors for the nonlinear transient analysis are then constructed from Eq. (22a,b)
and the initial angular velocity vector with adjusted values Eq. (23,24) replacing respective values in
Eq. (22a)

5.7. Two simulation studies

First consider the damping ratios of Table 3, the first mode damping ratio at 8.2% gives a reasonable
assumption for damping in an automatic transmission powertrain with open torque converter. For this
simulation, component speeds are shown in Fig. 9. The engine, transmission and vehicle speeds reduce slightly
as the vehicle is driven up the crest and at around t ¼ 4 s the road gradient changes from positive to negative
and the driver releases throttle to practically zero engine torque. Shortly afterwards the brake is tapped and
held on. Evident in Fig. 9, from t ¼ 4.5 to 4.75 s, are the gear impacts in the transmission and final drive.
Relative displacements in the shafting (Figs. 10 and 11) show the rigid body and transient motion of the
driving system, as well as the responses from engine firing (visible in Fig. 10 around t ¼ 4–4.05 s). As the car
rises the crest, the twist gradually reduces in line with reducing gradient load (though these first 4 s are not
shown in the plot). The change in torque is large but the time is long so there is no transient vibration. From
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Fig. 9. Simulated component speeds with high dynamic drag damping in the turbine.
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Fig. 10. Simulated input shaft twist with high dynamic drag damping in the turbine.
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Fig. 11. Simulated driveshaft (axle) twist with high dynamic drag damping in the turbine.
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t ¼ 4 to 4.2 s the engine torque reduces. This is enough time for a cycle of the first mode so some of the
response is already decaying before the engine torque drop is complete. Meanwhile the solution mostly follows
the path of rigid body motion. This shows that the damping of the shuffle mode has some significant effect on
the occurrence of the first gear impact as long as the engine transient excitation is not very abrupt (in time).
For a true step-down in torque, it will have little effect for the first cycle of response and hence little effect on
the gear impacts [10]. The nature of the engine transient torque is critical in the response. So is the shaping of
the resulting torque transient through the system before reaching the appropriate clearances; this shape is
affected by stiffness and damping. For this driving situation, the response plots show that there are no gear
impacts purely from the engine torque transient. This is because the mean load was still sufficiently high and
the transient vibration not large enough for gear separation. This does not discount the typical relationship
between ‘shuffle’ and ‘clunk’ in vehicles which we know can occur from large torque rise/fall events under the
presence of low mean load (especially with light damping such as in manual transmission powertrains). In this
instance the gear impacts and resulting impulsive responses would not have occurred had it not been for
the transient braking torque adding further oscillations and variation in rigid body motion (static twist). The
three clear tooth separations and subsequent single-sided impacts shown in Fig. 12 (transmission) and Fig. 13
(final drive) occur almost immediately after the brake release (t ¼ 4.5 s). This release excites the system as
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Fig. 13. Simulated mesh displacement in the final drive with high dynamic drag damping in the turbine.
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a step-down event. The three tooth separations have roughly the frequency of the axle mode (around 30Hz).
Referring to the normalised modes of Table 2; the step-down torque directly excites the axle mode with
maximum effect as applied at the wheel hubs (brake rotor). Hence, the impacts resulted mainly from the
braking transient exciting the axle modes. However, other transients and mean load (or a lack of) also
contributed. The minor impacts after t ¼ 4.67 s are due to the excited axle modes and more significantly due to
the ‘shuffle’ vibrations that originated from the engine transient; these are further excited by the braking
transient. We see this from a second simulation run with the dynamic drag on the turbine reduced for a lowest
mode damping ratio of 2.5%. Figs. 14 and 15 show the resulting relative displacements for the transmission
and final drive. Up to t ¼ 4.67 s the result is much the same in terms of the nature and number of impacts. This
is as the change in rigid body motion from the braking transients and the axle mode vibrations (unchanged by
the torque converter drag damping) were the chief causes of gear separation. However, the second simulation
clearly has more impacts on the later cycles of shuffle response (t ¼ 4.65–4.75 s), given the smaller damping for
the lowest mode. The difference in this particular simulation is not great, ‘shuffle’ is not the main cause of the
gear impacts in the first case and this similarity illustrates that. Finally, the effect of engine torque pulsations
were examined with the amplitudes of oscillations doubled and halved. As expected, no significant effects on
transient impacts are seen. Consequently, only the true transient excitations must be considered for impulsive
studies.
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Fig. 14. Simulated mesh displacement in the transmission with low dynamic drag damping in the turbine.
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Fig. 15. Simulated mesh displacement in the final drive with low dynamic drag damping in the turbine.
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6. Experimental study

6.1. Test rig, free vibration experiment and system model

The powertrain test rig of Fig. 2 includes all the components of the vehicle powertrain and has been
designed to simulate a vehicle mass of 1500 kg via a flywheel system. A set of locomotive wheels provide the
inertia to simulate this mass and are mounted so as to be driven by the tires. The load from aerodynamic drag
and any road gradient can be applied to the test rig via the flywheel system. Test rig parameters for inertia,
stiffness and gear dynamics are determined from detail drawings and measurements of the components.
Parameters that are difficult to determine include tire stiffness, clutch and band friction characteristics, torque
converter output torque and system damping, to name some. An experiment was developed to simultaneously
excite low-frequency free vibration of the vehicle driveline and high-frequency transient vibration from
impacts. On the test rig, the automatic transmission is placed in park (grounding the rigid body motion). To
apply the load a ‘torsion bar’ has been rigidly attached to each wheel rim (Fig. 16). An electromagnetic release
mechanism is attached to the end of the torsion bar. On each side up to 20 kg of mass is evenly loaded onto the
bar via the electromagnets. Turning off the power to the electromagnets releases the weights, freeing the stored
potential energy. (The masses are dropped onto thick rubber pads to minimise vibration transmitted through
the floor and test beds to the powertrain system.) The loading twists the driveline from the wheels up to the
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Fig. 16. Torsion bar for free vibration experiment.

Fig. 17. Reduced order torsional model for driveline free vibration experiment.
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parking pawl; potential energy is stored in the overall compliance. Accelerometers and strain gauges measure
the free vibration response. Data acquisition is triggered from an accelerometer located at the end of the bar.
Three sets of experiments are conducted as described in the subsequent sections.

A reduced order dynamic model is developed for the drivetrain sub-system (Fig. 17). This model is
grounded where the parking pawl mechanism holds the ring gear (output gear) of the automatic transmission.
The propeller shaft is discretised into two torsional springs. The final drive and differential is reduced to a
simple gear pair. The inertia and stiffness parameters were carefully determined from drawings and
measurements. The parking pawl stiffness and gear mesh stiffness are assumed as 2� 108 and 5� 108N/m,
respectively. For transient free vibration the torque vector includes the applied torque at the hub coordinates;
the sum of mean load from the electromagnet and overhanging torsion bar (TM) and the load to be released
for the particular experiment (TL). The clearance type algorithm is used for the parking pawl and final drive
stiffness elements. Initial condition velocities are all zero, initial condition displacements are h0 ¼ K�1T0,
where T(t) ¼ [0 0 0 0 0�(TM+TL) 0 �(TM+TL) 0]

T is the torque vector at t(0). The angular displacements
need to be adjusted for gear lash, di, in a similar fashion to the reduced order automatic transmission model.
Matlab solvers are used for simulation too with a maximum time step of 0.0001 s. At t ¼ 0+ the applied load is
removed (TL ¼ 0) initiating transient vibration though the mean load stays applied. The lowest mode of the
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driveline system is 1.44Hz followed by axle modes, which at 17.1 and 17.6Hz are significantly different to
those shown for the previous models. In the absence of the large inertia of the torsion bar and electromagnet
(mass removed from the hub coordinate) these modes would shift back to about 32–33Hz.

6.2. Results for Experiment I—mass release with no clunk

The applied load for this experiment is approximately 5 kg on each side. Fig. 18b provides the time domain
results for the left axle twist. The strain is measured in mV and the signal is offset for zero values at the initial
load. For this experiment the driveline ‘shuffle’ frequency and damping ratio are investigated. Clearly visible
in the result are the axle modes at around 16–17Hz. They have approximately a 5% damping ratio. The drag
torque on the tire and flywheel subassembly has been found to be the significant factor for damping the
‘shuffle’ mode. For the results (both left and right axles) the frequency has been calculated across each cycle
and damping ratio across each half cycle. The variation over cycles is shown in Figs. 19. At the end of the third
cycle the system is basically motionless. This third cycle is not visible in the plot. We believe the nonlinear
nature can be attributed to the rolling friction. The damping is difficult to determine accurately given the
nature of this experiment. A linear simulation is performed to match this result with viscous damping included
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in the tire to achieve a damping ratio for the axle modes of 5%. This damping element takes the ‘shuffle’
damping ratio to only 0.3%. This shows that the tire is not the significant contributor to the ‘shuffle’ mode
damping as discussed in the nonlinear simulation for the typical driving situation (Section 5). A small value of
viscous damping is included in all other shaft elements. A constant value for viscous inertial damping of
400Nms/rad is applied at the tires, taking the damping ratio to 14%, which extrapolating out from Fig. 19a
for the larger load of experiment 2 (more cycles) is reasonable. Note that this damping parameter is added
only to the diagonal of the damping matrix. Fig. 18 provides the results for the simulation compared with the
experiment, for the left axle. No attempt has been made to match amplitude of strain readings to angular
displacement. As can be seen from the figure, the dynamic model and simulation accurately captures the
‘linear’ response. As the cycles progress the actual damping may increase as shown in Fig. 19a, from 1.0 s
onwards there is no longer good comparison using the linear simulation. The result confirms the linear
dynamic model up to this point.

6.3. Result for Experiment II—mass release with clunk

When the larger load is applied (20 kg each side), the response of the system features the nonlinear tooth
impacts. The final drive lash was measured as 1.11 at the input (ring gear) which would include clearances
between ring and pinion, in the differential gears and in splines. The lash at the parking pawl mechanism is
significantly larger, it was measured as 3.61 which translates to 3.8mm at the circumference of the transmission
ring gear. Both measurements were made within 70.11 accuracy. Using these backlash values and the pre-
determined damping values (from Experiment I) the nonlinear simulation was run and compared with the
Experiment II results. Fig. 20 compares the output shaft twist as measured strain to predicted angular
displacement. Experiment II and simulation compare well for the first 1.4 s of oscillations. The left and right
hand axle twist is similarly well matched. Fig. 21 gives displacements across the clearance for the parking pawl
and final drive (for the simulation) and shows a single-sided impact transient response. In the experiment the
clearance is entered on the second cycle of response. This is not captured by the numerical simulation.
Adjustments to the size of lash, absolute damping, mean or applied load and stiffness have been made in
simulations but no improvement was seen; the measured values are provided as they are good results up to
1.4 s. Tweaking these measurements also provides no improvement. The discrepancy in the result after 1.4 s
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can be attributed to the nonlinear damping, additional lash locations from splines and universal joints or
nonlinear tire stiffness. However, the results confirm the system parameters for overall inertia, stiffness and the
measured lash.

6.4. Result for Experiment III—rocking test

Fig. 22a provides an example of the characteristics of double-sided impacts receding to single-sided impacts
as measured strain in the right axle. To obtain this result the driveline is simply rocked by hand on each side
with the torsion bar and data sampled after the rocking has stopped. The flat sections show the system passing
through lash, where the strain is zero. The sinusoidal ‘humps’ are the driveline twist when the lash is closed.
The humps occur on each side (top and bottom) of the flat section for double-sided impacts and just on one
side for single-sided impacts. One side has a larger response due to the presence of the mean load from the
combined moment of the torsion bar and electromagnet mass. Fig. 22b gives corresponding measured data for
an accelerometer mounted on the propeller shaft to pick up tangential acceleration in the transverse plane. The
data is clipped but shows clearly the high frequency transients during the impact events (the corners of the flat
sections for angular strain).

7. Conclusion

This study has made several contributions to understanding of impulsive responses in automatic
transmission systems with multiple clearances under transient excitations. (1). A detailed model was
formulated including the derivation of matrix elements for planetary and final drive gear sets. (2). A reduced
order system was formulated yielding a tractable nonlinear problem. Application of damping, transient
torques, mean loads, dynamic torque converter drag and determination of appropriate initial conditions are
all important aspects of the problem. A typical driving situation (with respect to road conditions and driver
behaviour) was successfully simulated and is readily adaptable to practical transient gear impact (clunk)
problems. It has been shown that only transient loads should be considered as the pulsating torque from the
engine (that could excite the gear rattle) was found to have no effect, these items have not been previously
reported. (3). An experiment was performed to verify the proposed approach. Parameters (inertia, stiffness,
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damping and backlash) were successfully identified and the nonlinear response under free vibration of the
driveline sub-system was duplicated. Finally, our results demonstrate characteristics similar to those of
previous experiments and simulations [10,12]. See Ref. [10] and compare results with Fig. 22a for strain
measurements; further, see Ref. [12] and compare their results with Fig. 22b for acceleration spikes. In our
current work no attempt has been made to quantify magnitude of impact responses as evaluations of
appropriate metrics have been made in a subsequent paper [22].
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